这是一个C ++程序,它演示了Euler定理的实现。数字和模数必须是互质的,才能存在模数乘法逆。
算法
Begin Take input to find modular multiplicative inverse Take input as modular value Perform inverse array function: modInverse(x + 1, 0); modInverse[1] = 1; for i = 2 to x modInverse[i] = (-(y / i) * modInverse[y mod i]) mod y + y return modInverse End
范例程式码
#include <iostream>
#include <vector>
using namespace std;
vector<int> inverseArray(int x, int y) {
vector<int> modInverse(x + 1, 0);
modInverse[1] = 1;
for (int i = 2; i <= x; i++) {
modInverse[i] = (-(y / i) * modInverse[y % i]) % y + y;
}
return modInverse;
}
int main() {
vector<int>::iterator it;
int a, m;
cout<<"Enter number to find modular multiplicative inverse: ";
cin>>a;
cout<<"Enter Modular Value: ";
cin>>m;
cout<<inverseArray(a, m)[a]<<endl;
}
输出结果
Enter number to find modular multiplicative inverse: 26 Enter Modular Value: 7 7






