【笔记】PyTorch快速入门:基础部分合集_在线工具

2022年5月10日11:57:38

PyTorch快速入门

Tensors

Tensors贯穿PyTorch始终

和多维数组很相似,一个特点是可以硬件加速

Tensors的初始化

有很多方式

  • 直接给值

    data = [[1,2],[3,4]]
    x_data = torch.tensor(data)
  • 从NumPy数组转来

    np_arr = np.array(data)
    x_np = torch.from_numpy(np_array)
  • 从另一个Tensor

    x_ones = torch.ones_like(x_data)
  • 赋01或随机值

    shape = (2,3,)
    rand_tensor = torch.rand(shape)
    ones_tensor = torch.ones(shape)
    zeros_tensor = torch.zeros(shape)

Tensors的属性

tensor = torch.rand(3,4)
print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")

shape维度,dtype元素类型,device运行设备(cpu/gpu)

Tensors的操作

使用GPU的方法

if torch.cuda_is_available():
  tensor = tensor.to("cuda")

各种操作

  • 索引和切片

    tensor = torch.ones(4,4)
    print(tensor[0]) 			#第一行(0开始)
    print(tensor[;,0])		#第一列(0开始)
    print(tensor[...,-1])	#最后一列
  • 连接

    t1 = torch.cat([tensor,tensor],dim=1)
    #沿着第一维的方向拼接
  • 矩阵乘法

    三种办法,类似于运算符重载、成员函数和非成员函数

    y1 = tensor @ tensor
    y2 = tensor.matmul(tensor.T)
    y3 = torch.rand_like(tensor)
    torch.matmul(tensor,tensor.T,out=y3)
  • 点乘

    类似,也是三种办法

    z1 = tensor * tensor
    z2 = tensor.mul(tensor)
    z3 = torch.rand_like(tensor)
    torch.mul(tensor,tensor,out=z3)
  • 单元素tensor求值

    agg = tensor.sum()
    agg_item = agg.item()
    print(agg_item,type(agg_item))
  • In-place 操作

    就是会改变成员内容的成员函数,以下划线结尾

    tensor.add_(5) #每个元素都+5

    节约内存,但是会丢失计算前的值,不推荐使用。

和NumPy的联系

  • Tensor转NumPy数组

    t = torch.ones(5)
    n = t.numpy()

    注意,这个写法类似引用,没有新建内存,二者修改同步

  • NumPy数组转tensor

    n = np.ones(5)
    t = torch.from_numpy(n)

    同样是引用,一个的修改会对另一个有影响

数据集和数据加载器

处理数据的代码通常很杂乱,难以维护,我们希望这部分代码和主代码分离。

加载数据集

以FasnionMNIST为例,我们需要四个参数

  • root是路径

  • Train区分训练集还是测试集

  • download表示如果root找不到,就从网上下载

  • transform表明数据的转换方式

import torch
from torch.utils.data import Dataset
from torchvision import datasets
from torchvision.transforms import ToTensor
import matplotlib.pyplot as plt

training_data = datasets.FansionMNIST(
	root = "data",
  train = True,
  download = True,
  transform = ToTensor()
)

test_data = datasets.FansionMNIST(
	root = "data",
  train = False,
  download = True,
  transform = ToTensor()
)

标号和可视化

labels_map = {
    0: "T-Shirt",
    1: "Trouser",
    2: "Pullover",
    3: "Dress",
    4: "Coat",
    5: "Sandal",
    6: "Shirt",
    7: "Sneaker",
    8: "Bag",
    9: "Ankle Boot",
}
figure = plt.figure(figsize=(8, 8))
cols, rows = 3, 3
for i in range(1, cols * rows + 1):
    sample_idx = torch.randint(len(training_data), size=(1,)).item()
    img, label = training_data[sample_idx]
    figure.add_subplot(rows, cols, i)
    plt.title(labels_map[label])
    plt.axis("off")
    plt.imshow(img.squeeze(), cmap="gray")
plt.show()

自己创建数据集类

必须实现三个函数__init__,__len__,__getitem__

import os
import pandas as pd
from torchvision.io import read_image

class CustomImageDataset(Dataset):
    def __init__(self, annotations_file, img_dir, transform=None, target_transform=None):
        self.img_labels = pd.read_csv(annotations_file)
        self.img_dir = img_dir
        self.transform = transform
        self.target_transform = target_transform

    def __len__(self):
        return len(self.img_labels)

    def __getitem__(self, idx):
        img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0])
        image = read_image(img_path)
        label = self.img_labels.iloc[idx, 1]
        if self.transform:
            image = self.transform(image)
        if self.target_transform:
            label = self.target_transform(label)
        return image, label

__init__类似于构造函数

__len__求数据个数

__getitem__按下标找数据和标签,类似重载[]

用DataLoaders准备数据用于训练

DataLoaders主要做3件事,将数据划分为小batches,随机打乱数据,和多核处理。

from torch.utils.data import DataLoader
train_dataloader = DataLoader(training_data,batch_size = 64,shuffle=True)
test_dataloader = DataLoader(test_data,batch_size = 64,shuffle=True)

用DataLoader进行迭代训练

# 展示图像和标签
train_features, train_labels = next(iter(train_dataloader))
print(f"Feature batch shape: {train_features.size()}")
print(f"Labels batch shape: {train_labels.size()}")
img = train_features[0].squeeze()
label = train_labels[0]
plt.imshow(img, cmap="gray")
plt.show()
print(f"Label: {label}")

Transforms

让数据变形成需要的形式

transform指定feature的变形

target_transform指定标签的变形

比如,需要数据从PIL Image变成Tensors,标签从整数变成one-hot encoded tensors

import torch
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda

ds = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor(),
    target_transform=Lambda(lambda y: torch.zeros(10, dtype=torch.float).scatter_(0, torch.tensor(y), value=1))
)

这里用了两个技术,ToTensor()Lambda表达式

ToTensor()将PIL images或者NumPy数组转化成FloatTensor,每个像素的灰度转化到[0,1]范围内

Lambda类似C++里的Lambda表达式,我们需要将整数转化为 one-hot encoded tensor,就先创建一个长度为数据标签类型的全0的Tensor,然后用scatter_()把第y个值改为1。注意到,scatter的index接受的参数也是Tensor,可见Tensor的广泛使用。

神经网络

神经网络是一些层或者模块,对数据进行处理。

torch.nn提供了诸多构造神经网络的模块,模块化的结构方便了管理复杂结构。

接下来以在FashionMNIST上构造一个图像分类器为例。

import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets, transforms

准备训练设备

有GPU用GPU,没有用CPU

device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using {device} device")

定义网络的类

我们的网络从nn.Module继承来

class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

然后创建一个实例(对象),把它放到device上

model = NeuralNetwork().to(device)
print(model)

跑一下的结果

Using cpu device
NeuralNetwork(
  (flatten): Flatten(start_dim=1, end_dim=-1)
  (linear_relu_stack): Sequential(
    (0): Linear(in_features=784, out_features=512, bias=True)
    (1): ReLU()
    (2): Linear(in_features=512, out_features=512, bias=True)
    (3): ReLU()
    (4): Linear(in_features=512, out_features=10, bias=True)
  )
)

结果是返回值的softmax,这是个10维的概率,找最大的就是预测结果

X = torch.rand(1, 28, 28, device=device)
logits = model(X)
pred_probab = nn.Softmax(dim=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")

模型的layers

以3张28x28的图像为例,分析它在network里的状态

input_image = torch.rand(3,28,28)
print(input_image.size())
''' 
torch.Size([3,28,28])
'''

nn.Flatten

Flatten顾名思义,扁平化,用于将2维tensor转为1维的

flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flag_image.size())
''' 
torch.Size([3,784])
'''

nn.Linear

Linear,做线性变换的

layer1 = nn.Linear(in_features=28*28,out_features=20)
hidden1 = layer1(flag_image)
print(hidden1.size())
'''
torch.Size([3,20])
'''

nn.ReLU

非线性激活函数,在Linear层后,增加非线性,让神经网络学到更多的信息

hidden1 = nn.ReLU()(hidden1)

nn.Sequential

Sequential,序列的,类似于把layers一层一层摆着

seq_modules = nn.Sequential(
    flatten,
    layer1,
    nn.ReLU(),
    nn.Linear(20, 10)
)
input_image = torch.rand(3,28,28)
logits = seq_modules(input_image)

nn.Softmax

最后一层的结果返回一个在[-inf,inf]的值logits,通过softmax层后,映射到[0,1]

这样[0,1]的值可以作为概率输出,dim指定和为1的维度

softmax = nn.Softmax(dim=1)
pred_probab = softmax(logits)

模型的参数

这些layers是参数化的,就是说在训练中weights和biases不断被优化

以下的代码输出这个模型里的所有参数值

for name, param in model.named_parameters():
  print(name,param.size(),param[:2])

自动求导

训练神经网络的时候,最常用的是反向传播,模型参数根据loss functoin的梯度进行调整。

为了求梯度,也就是求导,我们使用torch.autograd

考虑就一个layer的网络,输入x,参数w和b,以及一个loss function,也就是

import torch

x = torch.ones(5)  # input tensor
y = torch.zeros(3)  # expected output
w = torch.randn(5, 3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
z = torch.matmul(x, w)+b
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)

Tensors, Functions and Computational Graph

考虑这个过程的Computational Graph,如下

【笔记】PyTorch快速入门:基础部分合集_在线工具

这个一定是DAG(有向无环图)

为了计算loss在w和b方向上的梯度,我们给他们设置requires_grad

w.requires_grad_(True)
b.requires_grad_(True)

Functions实际上是对象,有计算正向值和反向导数的成员。

print(z.grad_fn)
print(loss.grad_fn)

计算梯度

我们要计算Loss对w和b的偏导,只需要使用

loss.backward()

然后就得到了

print(w.grad)
print(b.grad)

注意

  • 我们只能计算图里叶子的梯度,内部的点不能算
  • 一张图只能计算一次梯度,要保留节点的话,backward要传retain_graph=True
import torch
x = torch.randn((1,4),dtype=torch.float32,requires_grad=True)
y = x ** 2
z = y * 4
print(x)
print(y)
print(z)
loss1 = z.mean()
loss2 = z.sum()
print(loss1,loss2)
loss1.backward()    # 这个代码执行正常,但是执行完中间变量都free了,所以下一个出现了问题
print(loss1,loss2)
loss2.backward()    # 这时会引发错误

所以要把loss1的那行改成

loss1.backward(retain_graph=True)

不计算梯度

有些时候我们不需要计算梯度,比如模型已经训好了,只需要正向用

这个时候算梯度就很拖累时间,所以要禁用梯度

z = torch.matmul(x, w)+b
print(z.requires_grad)

with torch.no_grad():
    z = torch.matmul(x, w)+b
print(z.requires_grad)
'''
True
False
'''

另一个办法是用.detach()

z = torch.matmul(x, w)+b
z_det = z.detach()
print(z_det.requires_grad)
'''
False
'''

tensor输出和雅克比积

如果函数的输出是tensor,就不能简单算梯度了

结果是一个矩阵(其实就是依次遍历x和y的分量,求偏导)

\[J=\left(\begin{array}{ccc}\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}\end{array}\right)
\]

PyTorch不计算J的原始值,而是给一个\(v\),计算\(v^T\cdot J\),输出接口是统一的

具体来说,把v当参数传进去

inp = torch.eye(5, requires_grad=True)
out = (inp+1).pow(2)
out.backward(torch.ones_like(inp), retain_graph=True)

优化模型参数

有了模型,接下来要进行训练、验证和测试。

前置代码

首先要加载数据,建立模型

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda

training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = NeuralNetwork()

超参数

定义三个超参数

  • Epochs数:数据集迭代次数
  • Batch size:单次训练样本数
  • Learning Rate:学习速度

优化循环

接下来,我们进行多轮的优化,每轮叫一个epoch

每个epoch包含两部分,训练loop和验证/测试loop

Loss Function

PyTorch提供常见的Loss Functions

  • nn.MSELoss (Mean Square Error)
  • nn.NLLLoss (Negative Log Likelihood)
  • nn.CrossEntropyLoss (交叉熵)

我们使用交叉熵,把原始结果logits放进去

loss_fn = nn.CrossEntropyLoss()

Optimizer

初始化优化器,给它需要优化的参数,和超参数Learning Rate

optimizer = torch.optim.SGC(model.parameters(),lr = learning_rate)

优化器在每个epoch里做三件事

  • optimizer.zero_grad()将梯度清零
  • loss.backward()进行反向传播
  • optimizer.step()根据梯度调整参数

完整实现

train_loop里训练,test_loop里测试

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda

training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

class NeuralNetwork(nn.Module):
    def __init__(self):
        super(NeuralNetwork, self).__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = NeuralNetwork()

learning_rate = 1e-3
batch_size = 64
epochs = 5

# Initialize the loss function
loss_fn = nn.CrossEntropyLoss()

optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

def train_loop(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    for batch, (X, y) in enumerate(dataloader):
        # Compute prediction and loss
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")


def test_loop(dataloader, model, loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_loss, correct = 0, 0

    with torch.no_grad():
        for X, y in dataloader:
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()

    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 10
for t in range(epochs):
    print(f"Epoch {t + 1}\n-------------------------------")
    train_loop(train_dataloader, model, loss_fn, optimizer)
    test_loop(test_dataloader, model, loss_fn)
print("Done!")

保存和加载模型

如何保存和加载训好的模型?

import torch
import torchvision.models as models

保存和加载模型权重

通过torch.save方法,可以将模型保存到state_dict类型的字典里。

model = models.vgg16(pretrained=True)
torch.save(model.state_dict(), 'model_weights.pth')

而要加载的话,需要先构造相同类型的模型,然后把参数加载进去

model = models.vgg16() # we do not specify pretrained=True, i.e. do not load default weights
model.load_state_dict(torch.load('model_weights.pth'))
model.eval()

注意,一定要调一下model.eval(),防止后续出错

保存和加载模型

上一种方法里,需要先实例化模型,再导入权值

有没有办法直接保存和加载整个模型呢?

我们用不传mode.state_dict()参数,改为model

保存方式:

torch.save(model,'model.pth')

加载方式:

model = torch.load('model.pth')
  • 作者:GhostCai
  • 原文链接:https://www.cnblogs.com/ghostcai/p/16209766.html
    更新时间:2022年5月10日11:57:38 ,共 11635 字。