游戏服务器中的Netty应用以及源码浅析

2022年6月4日09:37:22

最近因为工作需要,学习了一段时间Netty的源码,并做了一个简单的分享,研究还不是特别深入,继续努力。因为分享也不涉及公司业务,所以这里也把这次对源码的研究成果分享出来
以下都是在游戏服务器开发中针对Netty使用需要了解知识点以及相关优化

这次分享主要设计以下内容

  • Netty线程模型
  • Netty对TCP相关参数的配置和具体含义
  • Netty对Epoll的封装
  • Netty的优雅关闭

Netty相关

一、Reactor模式和Netty线程模型

客户端连接数的限制

  • 内存资源
  • CPU资源
  • 端口号资源
    cat /proc/sys/net/ipv4/ip_local_port_range
  • 文件描述符资源
    系统级:当前系统可打开的最大数量,通过 cat /proc/sys/fs/file-max 查看
    用户级:指定用户可打开的最大数量,通过 cat /etc/security/limits.conf 查看
    进程级:单个进程可打开的最大数量,通过 cat /proc/sys/fs/nr_open 查看
  • 线程资源
    BIO/NIO

1. BIO模型

  • 所有操作都是同步阻塞(accept,read)
  • 客户端连接数与服务器线程数比例是1:1

游戏服务器中的Netty应用以及源码浅析

2. NIO模型

  • 非阻塞IO
  • 通过selector实现可以一个线程管理多个连接
  • 通过selector的事件注册(OP_READ/OP_WRITE/OP_CONNECT/OP_ACCEPT),处理自己感兴趣的事件
  • 客户端连接数与服务器线程数比例是n:1
    游戏服务器中的Netty应用以及源码浅析

3. Reacor模型

①. 单Reacor单线程模型

    所有IO在同一个NIO线程完成(处理连接,分派请求,编码,解码,逻辑运算,发送)
  • 优点

    • 编码简单
    • 不存在共享资源竞争
    • 并发安全
  • 缺点

    • 单线程处理大量链路时,性能无法支撑,不能合理利用多核处理
    • 线程过载后,处理速度变慢,会导致消息积压
    • 一旦线程挂掉,整个通信层不可用
      redis使用的就是reactor单进程模型,redis由于都是内存级操作,所以使用此模式没什么问题
  • reactor单线程模型图
    游戏服务器中的Netty应用以及源码浅析

  • netty reactor单线程模型图
    游戏服务器中的Netty应用以及源码浅析

// Netty对应实现方式:创建io线程组是,boss和worker,使用同一个线程组,并且线程数为1EventLoopGroup ioGroup=newNioEventLoopGroup(1);
b.group(ioGroup, ioGroup).channel(NioServerSocketChannel.class).childHandler(initializer);ChannelFuture f= b.bind(portNumner);
cf= f.sync();
f.get();

②. 单Reactor多线程模型

根据单线程模型,io处理中最耗时的编码,解码,逻辑运算等cpu消耗较多的部分,可提取出来使用多线程实现,并充分利用多核cpu的优势

  • 优点
    • 多线程处理逻辑运算,提高多核CPU利用率
  • 缺点
    • 对于单Reactor来说,大量链接的IO事件处理依然是性能瓶颈
  • reactor多线程模型图
    游戏服务器中的Netty应用以及源码浅析
  • netty reactor多线程模型图
    游戏服务器中的Netty应用以及源码浅析
// Netty对应实现方式:创建io线程组是,boss和worker,使用同一个线程组,并且线程数为1,把逻辑运算部分投递到用户自定义线程处理EventLoopGroup ioGroup=newNioEventLoopGroup(1);
b.group(ioGroup, ioGroup).channel(NioServerSocketChannel.class).childHandler(initializer);ChannelFuture f= b.bind(portNumner);
cf= f.sync();
f.get();

③. 主从Reactor多线程模型

根据多线程模型,可把它的性能瓶颈做进一步优化,即把reactor由单个改为reactor线程池,把原来的reactor分为mainReactor和subReactor

  • 优点

    • 解决单Reactor的性能瓶颈问题(Netty/Nginx采用这种设计)
  • reactor主从多线程模型图
    游戏服务器中的Netty应用以及源码浅析

  • netty reactor主从多线程模型图
    游戏服务器中的Netty应用以及源码浅析

// Netty对应实现方式:创建io线程组boss和worker,boss线程数为1,work线程数为cpu*2(一般IO密集可设置为2倍cpu核数)EventLoopGroup bossGroup=newNioEventLoopGroup(1);EventLoopGroup workerGroup=newNioEventLoopGroup();
b.group(bossGroup, workerGroup).channel(NioServerSocketChannel.class).childHandler(initializer);ChannelFuture f= b.bind(portNumner);
cf= f.sync();
f.get();

④. 部分源码分析

  1. 创建group实例
// 1.构造参数不传或传0,默认取系统参数配置,没有参数配置,取CPU核数*2super(nThreads==0? DEFAULT_EVENT_LOOP_THREADS: nThreads, executor, args);privatestaticfinalint DEFAULT_EVENT_LOOP_THREADS;static{
    DEFAULT_EVENT_LOOP_THREADS=Math.max(1,SystemPropertyUtil.getInt("io.netty.eventLoopThreads",NettyRuntime.availableProcessors()*2));}// 2.不同版本的JDK会有不同版本的SelectorProvider实现,Windows下的是WindowsSelectorProviderpublicNioEventLoopGroup(int nThreads,Executor executor){//默认selector,最终实现类似:https://github.com/frohoff/jdk8u-jdk/blob/master/src/macosx/classes/sun/nio/ch/DefaultSelectorProvider.java//basic flow: 1 java.nio.channels.spi.SelectorProvider 2 META-INF/services 3 defaultthis(nThreads, executor,SelectorProvider.provider());}// 3.创建nThread个EventExecutor,并封装到选择器chooser,chooser会根据线程数分别有两种实现(GenericEventExecutorChooser和PowerOfTwoEventExecutorChooser,算法不同,但实现逻辑一样,就是均匀的分配线程处理)EventExecutorChooserFactory.EventExecutorChooser chooser;
children=newEventExecutor[nThreads];for(int i=0; i< nThreads; i++){// ...
    children[i]=newChild(executor, args);// ...}
chooser= chooserFactory.newChooser(children);
  1. 设置group
// 两种方式设置group// parent和child使用同一个group,调用仍然是分别设置parent和child@OverridepublicServerBootstrapgroup(EventLoopGroup group){returngroup(group, group);}ServerBootstrap.group(EventLoopGroup parentGroup,EventLoopGroup childGroup){// 具体代码略,可直接参考源码// 里面实现内容是把parentGroup绑定到this.group,把childGroup绑定到this.childGroup}
  1. Netty启动
// 调用顺序ServerBootstrap:bind()->doBind()->initAndRegister()privateChannelFuturedoBind(finalSocketAddress localAddress){finalChannelFuture regFuture=initAndRegister();// ...doBind0(regFuture, channel, localAddress, promise);// ...}finalChannelFutureinitAndRegister(){// 创建ServerSocketChannelChannel channel= channelFactory.newChannel();// ...// 开始registerChannelFuture regFuture=config().group().register(channel);// register调用顺序// next().register(channel) -> (EventLoop) super.next() -> chooser.next()// ...}

由以上源码可得知,bind只在起服调用一次,因此bossGroup仅调用一次regist,也就是仅调用一次next,因此只有一根线程是有用的,其余线程都是废弃的,所以bossGroup线程数设置为1即可

// 启动BossGroup线程并绑定本地SocketAddressprivatestaticvoiddoBind0(finalChannelFuture regFuture,finalChannel channel,finalSocketAddress localAddress,finalChannelPromise promise){
    channel.eventLoop().execute(newRunnable(){@Overridepublicvoidrun(){if(regFuture.isSuccess()){
                channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE);}else{
                promise.setFailure(regFuture.cause());}}});}
  1. 客户端连接
// 消息事件读取NioEventLoop.run()->processSelectedKeys()->...->ServerBootstrapAcceptor.channelRead// ServerBootstrapAcceptor.channelRead处理客户端连接事件// 最后一行的childGroup.register的逻辑和上面的代码调用处一样publicvoidchannelRead(ChannelHandlerContext ctx,Object msg){
    child.pipeline().addLast(childHandler);setChannelOptions(child, childOptions, logger);setAttributes(child, childAttrs);
    childGroup.register(child)}

二、select/poll和epoll

1.概念

  • select(时间复杂度O(n)):用一个fd数组保存所有的socket,然后通过死循环遍历调用操作系统的select方法找到就绪的fd
while(1){
  nready=select(list);// 用户层依然要遍历,只不过少了很多无效的系统调用for(fd<-- fdlist){if(fd!=-1){// 只读已就绪的文件描述符read(fd, buf);// 总共只有 nready 个已就绪描述符,不用过多遍历if(--nready==0)break;}}}
  • poll(时间复杂度O(n)):同select,不过把fd数组换成了fd链表,去掉了fd最大连接数(1024个)的数量限制
  • epoll(时间复杂度O(1)):解决了select/poll的几个缺陷
    • 调用需传入整个fd数组或fd链表,需要拷贝数据到内核
    • 内核层需要遍历检查文件描述符的就绪状态
    • 内核仅返回可读文件描述符个数,用户仍需自己遍历所有fd
  • epoll是操作系统基于事件关联fd,做了以下优化:
    • 内核中保存一份文件描述符集合,无需用户每次都重新传入,只需告诉内核修改的部分即可。(epoll_ctl)
    • 内核不再通过轮询的方式找到就绪的文件描述符,而是通过异步 IO 事件唤醒。(epoll_wait)
    • 内核仅会将有 IO 事件的文件描述符返回给用户,用户也无需遍历整个文件描述符集合。

epoll仅在Linux系统上支持

2.jdk提供selector

// DefaultSelectorProvider.create方法在不同版本的jdk下有不同实现,创建不同Selector// Windows版本的jdk,其实现中调用的是native的poll方法publicstaticSelectorProvidercreate(){returnnewWindowsSelectorProvider();}// Linux版本的jdkpublicstaticSelectorProvidercreate(){String str=(String)AccessController.doPrivileged(newGetPropertyAction("os.name"));if(str.equals("SunOS")){returncreateProvider("sun.nio.ch.DevPollSelectorProvider");}if(str.equals("Linux")){returncreateProvider("sun.nio.ch.EPollSelectorProvider");}returnnewPollSelectorProvider();}

3.Netty提供的Epoll封装

netty依然基于epoll做了一层封装,主要做了以下事情:

(1)java的nio默认使用水平触发,Netty的Epoll默认使用边缘触发,且可配置

  • 边缘触发:当状态变化时才会发生io事件。
  • 水平触发:只要满足条件,就触发一个事件(只要有数据没有被获取,内核就不断通知你)

(2)Netty的Epoll提供更多的nio的可配参数。
(3)调用c代码,更少gc,更少synchronized
具体可以参考源码NioEventLoop.run和EpollEventLoop.run进行对比

4.Netty相关类图

  • 线程组类图
    游戏服务器中的Netty应用以及源码浅析

  • channel类图
    游戏服务器中的Netty应用以及源码浅析

5.配置Netty为EpollEventLoop

// 创建指定的EventLoopGroup
bossGroup=newEpollEventLoopGroup(1,newDefaultThreadFactory("BOSS_LOOP"));
workerGroup=newEpollEventLoopGroup(32,newDefaultThreadFactory("IO_LOOP"));
b.group(bossGroup, workerGroup)// 指定channel的class.channel(EpollServerSocketChannel.class).childHandler(initializer);// 其中channel(clz)方法是通过class来new一个反射ServerSocketChannel创建工厂类publicBchannel(Class<?extendsC> channelClass){if(channelClass==null){thrownewNullPointerException("channelClass");}returnchannelFactory(newReflectiveChannelFactory<C>(channelClass));}finalChannelFutureinitAndRegister(){// ...Channel channel= channelFactory.newChannel();// ...}

三、Netty相关参数

1.SO_KEEPALIVE

childOption(ChannelOption.SO_KEEPALIVE,true)

TCP链路探活

1.SO_REUSEADDR

option(ChannelOption.SO_REUSEADDR,true)

重用处于TIME_WAIT但是未完全关闭的socket地址,让端口释放后可立即被重用。默认关闭,需要手动开启

2.TCP_NODELAY

childOption(ChannelOption.TCP_NODELAY,true)

IP报文格式
游戏服务器中的Netty应用以及源码浅析
TCP报文格式
游戏服务器中的Netty应用以及源码浅析

  • 开启则禁用TCP Negal算法,优点低延时,缺点在大量小数据包的情况下,网络利用率低

  • 关闭则开启TCP Negal算法,优点提高网络利用率(数据缓存到一定量才发送),缺点延时高

  • Negal算法

    1. 如果包长度达到MSS(maximum segment size最大分段长度),则允许发送;
    2. 如果该包含有FIN,则允许发送;
    3. 设置了TCP_NODELAY选项,则允许发送;
    4. 未设置TCP_CORK选项(是否阻塞不完整报文)时,若所有发出去的小数据包(包长度小于MSS)均被确认,则允许发送;
    5. 上述条件都未满足,但发生了超时(一般为200ms),则立即发送。
  • MSS计算规则
    MSS的值是在TCP三次握手建立连接的过程中,经通信双方协商确定的
    802.3标准里,规定了一个以太帧的数据部分(Payload)的最大长度是1500个字节(MTU)

    MSS = MTU - IP首部 - TCP首部
    
    以太网环境下:
      MTU = 1500字节
    IP首部 = 32*5/4 = 160bit = 20字节
    TCP首部 = 32*5/4 = 160bit = 20字节
    
    最终得出MSS = 1460字节

结论:因为游戏服务器的实时性要求,在网络带宽足够的情况下,建议开启TCP_NODELAY,关闭Negal算法,带宽可以浪费,响应必须及时

注意:需要客户端服务器均关闭Negal算法,否则仍然会有延迟发送,影响传输速度

3.SO_BACKLOG

option(ChannelOption.SO_BACKLOG,100)

操作系统内核中维护的两个队列

  • syns queue:保存syn到达,但没完成三次握手的半连接
cat /proc/sys/net/ipv4/tcp_max_syn_backlog
  • accpet queue:保存完成三次握手,内核等待accept调用的连接
cat /proc/sys/net/core/somaxconn

netty对于backlog的默认值设置在NetUtil类253行

 SOMAXCONN=AccessController.doPrivileged(newPrivilegedAction<Integer>(){@OverridepublicIntegerrun(){// 1.设置默认值int somaxconn=PlatformDependent.isWindows()?200:128;File file=newFile("/proc/sys/net/core/somaxconn");if(file.exists()){// 2.文件存在,读取操作系统配置
            in=newBufferedReader(newFileReader(file));
            somaxconn=Integer.parseInt(in.readLine());}else{// 3.文件不存在,从各个参数中读取if(SystemPropertyUtil.getBoolean("io.netty.net.somaxconn.trySysctl",false)){
                tmp=sysctlGetInt("kern.ipc.somaxconn");if(tmp==null){
                    tmp=sysctlGetInt("kern.ipc.soacceptqueue");if(tmp!=null){
                        somaxconn= tmp;}}else{
                    somaxconn= tmp;}}}}}

结论:Linux下/proc/sys/net/core/somaxconn一定存在,所以backlog一定取得它的值,我参考prod机器的参数配置的65535,也就是不设置backlog的情况下,服务器运行缓存65535个全连接

4.ALLOCATOR和RCVBUF_ALLOCATOR

游戏服务器中的Netty应用以及源码浅析

默认分配ByteBuffAllocator赋值如下:
ByteBufUtil.java

static{//以io.netty.allocator.type为准,没有的话,安卓平台用非池化实现,其他用池化实现String allocType=SystemPropertyUtil.get("io.netty.allocator.type",PlatformDependent.isAndroid()?"unpooled":"pooled");
    allocType= allocType.toLowerCase(Locale.US).trim();ByteBufAllocator alloc;if("unpooled".equals(allocType)){
        alloc=UnpooledByteBufAllocator.DEFAULT;
        logger.debug("-Dio.netty.allocator.type: {}", allocType);}elseif("pooled".equals(allocType)){
        alloc=PooledByteBufAllocator.DEFAULT;
        logger.debug("-Dio.netty.allocator.type: {}", allocType);}else{//io.netty.allocator.type设置的不是"unpooled"或者"pooled",就用池化实现。
        alloc=PooledByteBufAllocator.DEFAULT;
        logger.debug("-Dio.netty.allocator.type: pooled (unknown: {})", allocType);}
    DEFAULT_ALLOCATOR= alloc;}

RCVBUF_ALLOCATOR默认AdaptiveRecvByteBufAllocator

publicclassDefaultChannelConfigimplementsChannelConfig{// ...publicDefaultChannelConfig(Channel channel){this(channel,newAdaptiveRecvByteBufAllocator());}// ...}

四、Netty关闭

/**
 * Shortcut method for {@link #shutdownGracefully(long, long, TimeUnit)} with sensible default values.
 *
 * @return the {@link #terminationFuture()}
 */Future<?>shutdownGracefully();/**
 * Signals this executor that the caller wants the executor to be shut down.  Once this method is called,
 * {@link #isShuttingDown()} starts to return {@code true}, and the executor prepares to shut itself down.
 * Unlike {@link #shutdown()}, graceful shutdown ensures that no tasks are submitted for <i>'the quiet period'</i>
 * (usually a couple seconds) before it shuts itself down.  If a task is submitted during the quiet period,
 * it is guaranteed to be accepted and the quiet period will start over.
 *
 * @param quietPeriod the quiet period as described in the documentation
                     静默期:在此期间,仍然可以提交任务
 * @param timeout     the maximum amount of time to wait until the executor is {@linkplain #shutdown()}
 *                    regardless if a task was submitted during the quiet period
                     超时时间:等待所有任务执行完的最大时间
 * @param unit        the unit of {@code quietPeriod} and {@code timeout}
 *
 * @return the {@link #terminationFuture()}
 */Future<?>shutdownGracefully(long quietPeriod,long timeout,TimeUnit unit);// 抽象类中的实现staticfinallong DEFAULT_SHUTDOWN_QUIET_PERIOD=2;staticfinallong DEFAULT_SHUTDOWN_TIMEOUT=15;@OverridepublicFuture<?>shutdownGracefully(){returnshutdownGracefully(DEFAULT_SHUTDOWN_QUIET_PERIOD, DEFAULT_SHUTDOWN_TIMEOUT,TimeUnit.SECONDS);}
  1. 把NIO线程的状态位设置成ST_SHUTTING_DOWN状态,不再处理新的消息(不允许再对外发送消息);
  2. 退出前的预处理操作:把发送队列中尚未发送或者正在发送的消息发送完、把已经到期或者在退出超时之前到期的定时任务执行完成、把用户注册到NIO线程的退出Hook任务执行完成;
  3. 资源的释放操作:所有Channel的释放、多路复用器的去注册和关闭、所有队列和定时任务的清空取消,最后是NIO线程的退出。
  • 作者:何小成Henry
  • 原文链接:https://blog.csdn.net/hjcenry/article/details/120339510
    更新时间:2022年6月4日09:37:22 ,共 10897 字。