一个关于wait/notify与锁关系的探究

2022年6月1日08:57:27

  wait/notify 机制是解决生产者消费者问题的良药。它的核心逻辑是基于条件变量的锁机制处理。所以,它们到底是什么关系?wait()时是否需要持有锁? notify()是否需要持有锁?先说答案:都需要持有锁。

  wait需要持有锁的原因是,你肯定需要知道在哪个对象上进行等待,如果不持有锁,将无法做到对象变更时进行实时感知通知的作用。与此同时,为了让其他线程可以操作该值的变化,它必须要先释放掉锁,然后在该节点上进行等待。不持有锁而进行wait,可能会导致长眠不起。而且,如果不持有锁,则当wait之后的操作,都可能是错的,因为可能这个数据已经过时,其实也叫线程不安全了。总之,一切为了安全,单独的wait做不成这事。

  notify需要持有锁的原因是,它要保证线程的安全,只有它知道数据变化了,所以它有权力去通知其他线程数据变化。而且通知完之后,不能立即释放锁,即必须在持有锁的情况下进行通知,否则notify后续的工作的线程安全性将无法保证,尽量它是在lock的范围内,但却因为锁释放,将导致不可预期的结果。而且在notify的时候,并不能真正地将对应的线程唤醒,即不能从操作系统层面唤醒线程,因为此时当前通知线程持有锁,而此时如果将其他等待线程唤醒,它们将立即参与到锁的竞争中来,而这时的竞争是一定会失败的,这可能会导致被唤醒的线程立即又进入等待队列,更糟糕的是它可能再也不会被唤醒 了。所以不能将在持有锁的时,将对应的线程真正唤醒,我们看到的notify只是从语言上下文级别,将它从等待队列转移到同步队列而已,对此操作系统一无所知。

1. 实验验证

  我们通过一个实验来看一下,wait/和notify是否会在持有锁的情况下进行。

private ReentrantLock mainLock =new ReentrantLock();

    @Testpublicvoid testWaitNotify()throws InterruptedException {
        Condition c1= mainLock.newCondition();
        Condition c3= mainLock.newCondition();

        CountDownLatch t1StartLatch=new CountDownLatch(2);
        Thread t1=new Thread(() -> {
            mainLock.lock();try {
                System.out.println(LocalDateTime.now()+ " - t1 start");
                c1.await();
                System.out.println(LocalDateTime.now()+ " - t1 c1 await out");// 过早通知问题,导致无法测试下一步//                c3.await();//                System.out.println(LocalDateTime.now() + " - t1 c2 await out");                t1StartLatch.await();
                System.out.println(LocalDateTime.now()+ " - t1 sleeping");
                SleepUtil.sleepMillis(10_000L);
                c1.signalAll();
                c3.signalAll();
                System.out.println(LocalDateTime.now()+ " - t1 notified, sleeping again");
                SleepUtil.sleepMillis(10_000L);
                System.out.println(LocalDateTime.now()+ " - t1 out");
            }catch (Exception e) {
                System.err.println("t1 exception ");
                e.printStackTrace();
            }finally {
                mainLock.unlock();
            }
        },"t1");
        Thread t2=new Thread(() -> {
            mainLock.lock();try {
                t1StartLatch.countDown();
                System.out.println(LocalDateTime.now()+ " - t2 c1 signal");
                c1.signalAll();
                System.out.println(LocalDateTime.now()+ " - t2 wait");
                c1.await();
                System.out.println(LocalDateTime.now()+ " - t2 out");
            }catch (Exception e) {
                System.err.println("t2 exception ");
                e.printStackTrace();
            }finally {
                mainLock.unlock();
            }
        },"t2");
        Thread t3=new Thread(() -> {
            mainLock.lock();try {
                t1StartLatch.countDown();
                System.out.println(LocalDateTime.now()+ " - t3 c3 signal");
                c3.signalAll();
                System.out.println(LocalDateTime.now()+ " - t3 wait");
                c3.await();
                System.out.println(LocalDateTime.now()+ " - t3 out");
            }catch (Exception e) {
                System.err.println("t2 exception ");
                e.printStackTrace();
            }finally {
                mainLock.unlock();
            }
        },"t3");
        t1.start();
        t2.start();
        t3.start();
        t1.join();
        System.out.println(LocalDateTime.now()+ " - main t1 out");
        t2.join();
        System.out.println(LocalDateTime.now()+ " - main t2 out");
        t3.join();
        System.out.println(LocalDateTime.now()+ " - main t3 out");
    }

  大概意思是,针对同一个锁,wait之后,是否可以被其他线程进入临界区?如果wait之前不通知进入,wait之后能进入,说明wait依赖于锁,而且会释放当前锁。notify之后,wait()是否会立即执行,如果必须等到notify的模块完成后,才执行,说明notify是必须要依赖于锁的。

  结果如下:

2022-03-27T20:09:43.588 - t1 start2022-03-27T20:09:43.603 - t2 c1 signal2022-03-27T20:09:43.603 - t2 wait2022-03-27T20:09:43.603 - t3 c3 signal2022-03-27T20:09:43.603 - t3 wait2022-03-27T20:09:43.603 - t1 c1 await out2022-03-27T20:09:43.603 - t1 sleeping2022-03-27T20:09:53.605 - t1 notified, sleeping again2022-03-27T20:10:03.612 - t1 out2022-03-27T20:10:03.612 - t2 out2022-03-27T20:10:03.612 - main t1 out2022-03-27T20:10:03.612 - t3 out2022-03-27T20:10:03.612 - main t2 out2022-03-27T20:10:03.612 - main t3 out2022-03-27T20:11:39.982 - t1 start2022-03-27T20:11:39.982 - t2 c1 signal2022-03-27T20:11:39.982 - t2 wait2022-03-27T20:11:39.982 - t3 c3 signal2022-03-27T20:11:39.982 - t3 wait2022-03-27T20:11:39.982 - t1 c1 await out2022-03-27T20:11:39.982 - t1 sleeping2022-03-27T20:11:49.989 - t1 notified, sleeping again2022-03-27T20:11:59.990 - t1 out2022-03-27T20:11:59.990 - t2 out2022-03-27T20:11:59.990 - main t1 out2022-03-27T20:11:59.990 - t3 out2022-03-27T20:11:59.990 - main t2 out2022-03-27T20:11:59.990 - main t3 out

2. wait/notify 的实现机制

  我们以AQS的实现机制为线索,探索wait/notify机制。它在唤醒操作队列时,设置状态为 SIGNAL , 但它实际不执行操作系统唤醒。

//     java.util.concurrent.locks.AbstractQueuedSynchronizer.ConditionObject#signalAll/**
         * Moves all threads from the wait queue for this condition to
         * the wait queue for the owning lock.
         *
         *@throws IllegalMonitorStateException if {@link #isHeldExclusively}
         *         returns {@code false}*/publicfinalvoid signalAll() {if (!isHeldExclusively())thrownew IllegalMonitorStateException();
            Node first= firstWaiter;if (first !=null)
                doSignalAll(first);
        }// java.util.concurrent.locks.AbstractQueuedSynchronizer.ConditionObject#doSignalAll/**
         * Removes and transfers all nodes.
         *@param first (non-null) the first node on condition queue*/privatevoid doSignalAll(Node first) {
            lastWaiter= firstWaiter =null;do {
                Node next= first.nextWaiter;
                first.nextWaiter=null;
                transferForSignal(first);
                first= next;
            }while (first !=null);
        }// java.util.concurrent.locks.AbstractQueuedSynchronizer#transferForSignal/**
     * Transfers a node from a condition queue onto sync queue.
     * Returns true if successful.
     *@param node the node
     *@return true if successfully transferred (else the node was
     * cancelled before signal)*/finalboolean transferForSignal(Node node) {/*
         * If cannot change waitStatus, the node has been cancelled.*/if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))returnfalse;/*
         * Splice onto queue and try to set waitStatus of predecessor to
         * indicate that thread is (probably) waiting. If cancelled or
         * attempt to set waitStatus fails, wake up to resync (in which
         * case the waitStatus can be transiently and harmlessly wrong).*/
        Node p= enq(node);int ws = p.waitStatus;// 不到万不得已,不会真正唤醒等待中的队列,从而满足notify无法将线程唤醒的作用,或者说线程仍然在操作系统的等待队列上// 它只是将当前线程移动到本语文的同步队列中,以下线程下次运行过来时可以通过该限制if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            LockSupport.unpark(node.thread);returntrue;
    }/**
     * Inserts node into queue, initializing if necessary. See picture above.
     *@param node the node to insert
     *@return node's predecessor*/private Node enq(final Node node) {for (;;) {
            Node t= tail;if (t ==null) {// Must initializeif (compareAndSetHead(new Node()))
                    tail= head;
            }else {
                node.prev= t;if (compareAndSetTail(t, node)) {
                    t.next= node;return t;
                }
            }
        }
    }// java.util.concurrent.locks.AbstractQueuedSynchronizer.ConditionObject#await()/**
         * Implements interruptible condition wait.
         * <ol>
         * <li> If current thread is interrupted, throw InterruptedException.
         * <li> Save lock state returned by {@link #getState}.
         * <li> Invoke {@link #release} with saved state as argument,
         *      throwing IllegalMonitorStateException if it fails.
         * <li> Block until signalled or interrupted.
         * <li> Reacquire by invoking specialized version of
         *      {@link #acquire} with saved state as argument.
         * <li> If interrupted while blocked in step 4, throw InterruptedException.
         * </ol>*/publicfinalvoid await()throws InterruptedException {if (Thread.interrupted())thrownew InterruptedException();
            Node node= addConditionWaiter();// 进来等待队列,先释放锁,此时进入线程不安全状态int savedState = fullyRelease(node);int interruptMode = 0;// 此判断只是本语文级别的等待队列限制// notify 时只能满足这个条件,而不会将线程从操作系统挂起队列中唤醒,即不会进行 LockSupport.unpark()while (!isOnSyncQueue(node)) {// 交由操作系统进行线程挂起
                LockSupport.park(this);if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)break;
            }// 重新进行锁的获取,尝试if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
                interruptMode= REINTERRUPT;if (node.nextWaiter !=null)// clean up if cancelled                unlinkCancelledWaiters();if (interruptMode != 0)
                reportInterruptAfterWait(interruptMode);
        }// java.util.concurrent.locks.AbstractQueuedSynchronizer#acquireQueued/**
     * Acquires in exclusive uninterruptible mode for thread already in
     * queue. Used by condition wait methods as well as acquire.
     *
     *@param node the node
     *@param arg the acquire argument
     *@return {@code true} if interrupted while waiting*/finalboolean acquireQueued(final Node node,int arg) {boolean failed =true;try {boolean interrupted =false;for (;;) {final Node p = node.predecessor();// 获取当锁,则替换head后返回// 而 tryAcquire() 则由各自策略实现if (p == head && tryAcquire(arg)) {
                    setHead(node);
                    p.next=null;// help GC
                    failed =false;return interrupted;
                }// 如果获取不到锁,则重新进入操作系统等待队列if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                    interrupted=true;
            }
        }finally {if (failed)
                cancelAcquire(node);
        }
    }

  所以,总结:

1. wait将会释放持有的锁;
2. wait将会加入到语言级别的等待队列,同时也会提交给操作系统的等待队列,做到真正的线程挂起;
3. wait将会在被操作系统唤醒后,重新进行新一轮的锁获取尝试,返回时已携带回原有的锁,从外部看起来就像锁一直都在一样;
4. notify不会真正的唤醒等待的线程,而只是将各等待线程从语言级别的等待队列移出,到语言级别的同步队列;
5. notify只有在极端情况下,才会做到线程的真正唤醒作用,比如中断,但这被唤醒的线程将无法正常进行业务操作,所以也是安全的;
6. 只有在整体的锁在进行 unlock() 的时候,才会唤醒线程,使其重新参与锁的竞争;

3. lock/unlock 流程

  同样的AQS的实现为线索,lock/unlock 流程如下:

// java.util.concurrent.locks.ReentrantLock#lock/**
     * Acquires the lock.
     *
     * <p>Acquires the lock if it is not held by another thread and returns
     * immediately, setting the lock hold count to one.
     *
     * <p>If the current thread already holds the lock then the hold
     * count is incremented by one and the method returns immediately.
     *
     * <p>If the lock is held by another thread then the
     * current thread becomes disabled for thread scheduling
     * purposes and lies dormant until the lock has been acquired,
     * at which time the lock hold count is set to one.*/publicvoid lock() {
        sync.lock();
    }// java.util.concurrent.locks.ReentrantLock.NonfairSync#lock/**
         * Performs lock.  Try immediate barge, backing up to normal
         * acquire on failure.*/finalvoid lock() {if (compareAndSetState(0, 1))
                setExclusiveOwnerThread(Thread.currentThread());else
                acquire(1);
        }// java.util.concurrent.locks.AbstractQueuedSynchronizer#acquire/**
     * Acquires in exclusive mode, ignoring interrupts.  Implemented
     * by invoking at least once {@link #tryAcquire},
     * returning on success.  Otherwise the thread is queued, possibly
     * repeatedly blocking and unblocking, invoking {@link
     * #tryAcquire} until success.  This method can be used
     * to implement method {@link Lock#lock}.
     *
     *@param arg the acquire argument.  This value is conveyed to
     *        {@link #tryAcquire} but is otherwise uninterpreted and
     *        can represent anything you like.*/publicfinalvoid acquire(int arg) {if (!tryAcquire(arg) &&// 同上wait时的锁争抢操作            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
            selfInterrupt();
    }// java.util.concurrent.locks.ReentrantLock#unlock/**
     * Attempts to release this lock.
     *
     * <p>If the current thread is the holder of this lock then the hold
     * count is decremented.  If the hold count is now zero then the lock
     * is released.  If the current thread is not the holder of this
     * lock then {@link IllegalMonitorStateException} is thrown.
     *
     *@throws IllegalMonitorStateException if the current thread does not
     *         hold this lock*/publicvoid unlock() {
        sync.release(1);
    }// java.util.concurrent.locks.AbstractQueuedSynchronizer#release/**
     * Releases in exclusive mode.  Implemented by unblocking one or
     * more threads if {@link #tryRelease} returns true.
     * This method can be used to implement method {@link Lock#unlock}.
     *
     *@param arg the release argument.  This value is conveyed to
     *        {@link #tryRelease} but is otherwise uninterpreted and
     *        can represent anything you like.
     *@return the value returned from {@link #tryRelease}*/publicfinalboolean release(int arg) {if (tryRelease(arg)) {
            Node h= head;// 直接唤醒头节点(真正的唤醒)if (h !=null && h.waitStatus != 0)
                unparkSuccessor(h);returntrue;
        }returnfalse;
    }// java.util.concurrent.locks.AbstractQueuedSynchronizer#unparkSuccessor/**
     * Wakes up node's successor, if one exists.
     *
     *@param node the node*/privatevoid unparkSuccessor(Node node) {/*
         * If status is negative (i.e., possibly needing signal) try
         * to clear in anticipation of signalling.  It is OK if this
         * fails or if status is changed by waiting thread.*/int ws = node.waitStatus;if (ws < 0)
            compareAndSetWaitStatus(node, ws,0);/*
         * Thread to unpark is held in successor, which is normally
         * just the next node.  But if cancelled or apparently null,
         * traverse backwards from tail to find the actual
         * non-cancelled successor.*/
        Node s= node.next;if (s ==null || s.waitStatus > 0) {
            s=null;for (Node t = tail; t !=null && t != node; t = t.prev)if (t.waitStatus <= 0)
                    s= t;
        }// 真正唤醒线程,只有一个线程将被唤醒if (s !=null)
            LockSupport.unpark(s.thread);
    }

  总结: lock/unlock 是一个真正的上锁解锁操作,上锁时如未成功,则进行park()进行操作系统挂起,解锁时将头节点unpark()交由操作系统调度。

4. 唤醒多个等待线程

  如何唤醒多个等待线程?共享锁有这个需求,其实也是notifyAll 的表面语义所在。

// java.util.concurrent.locks.AbstractQueuedSynchronizer#releaseShared/**
     * Releases in shared mode.  Implemented by unblocking one or more
     * threads if {@link #tryReleaseShared} returns true.
     *
     *@param arg the release argument.  This value is conveyed to
     *        {@link #tryReleaseShared} but is otherwise uninterpreted
     *        and can represent anything you like.
     *@return the value returned from {@link #tryReleaseShared}*/publicfinalboolean releaseShared(int arg) {if (tryReleaseShared(arg)) {
            doReleaseShared();returntrue;
        }returnfalse;
    }// java.util.concurrent.locks.AbstractQueuedSynchronizer#doReleaseShared/**
     * Release action for shared mode -- signals successor and ensures
     * propagation. (Note: For exclusive mode, release just amounts
     * to calling unparkSuccessor of head if it needs signal.)*/privatevoid doReleaseShared() {/*
         * Ensure that a release propagates, even if there are other
         * in-progress acquires/releases.  This proceeds in the usual
         * way of trying to unparkSuccessor of head if it needs
         * signal. But if it does not, status is set to PROPAGATE to
         * ensure that upon release, propagation continues.
         * Additionally, we must loop in case a new node is added
         * while we are doing this. Also, unlike other uses of
         * unparkSuccessor, we need to know if CAS to reset status
         * fails, if so rechecking.*/for (;;) {
            Node h= head;if (h !=null && h != tail) {int ws = h.waitStatus;if (ws == Node.SIGNAL) {if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))continue;// loop to recheck cases// 唤醒头节点                    unparkSuccessor(h);
                }// 因为上一头节点刚刚被设置为0,说明正在执行中,设置当前head为 PROPAGATEelseif (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))continue;// loop on failed CAS            }// 即尽量只设置一个 head 节点即可// 除非在这期间发生变更if (h == head)// loop if head changedbreak;
        }
    }// java.util.concurrent.locks.AbstractQueuedSynchronizer#acquireSharedInterruptibly/**
     * Acquires in shared mode, aborting if interrupted.  Implemented
     * by first checking interrupt status, then invoking at least once
     * {@link #tryAcquireShared}, returning on success.  Otherwise the
     * thread is queued, possibly repeatedly blocking and unblocking,
     * invoking {@link #tryAcquireShared} until success or the thread
     * is interrupted.
     *@param arg the acquire argument.
     * This value is conveyed to {@link #tryAcquireShared} but is
     * otherwise uninterpreted and can represent anything
     * you like.
     *@throws InterruptedException if the current thread is interrupted*/publicfinalvoid acquireSharedInterruptibly(int arg)throws InterruptedException {if (Thread.interrupted())thrownew InterruptedException();if (tryAcquireShared(arg) < 0)
            doAcquireSharedInterruptibly(arg);
    }// java.util.concurrent.locks.AbstractQueuedSynchronizer#doAcquireSharedInterruptibly/**
     * Acquires in shared interruptible mode.
     *@param arg the acquire argument*/privatevoid doAcquireSharedInterruptibly(int arg)throws InterruptedException {final Node node = addWaiter(Node.SHARED);boolean failed =true;try {for (;;) {final Node p = node.predecessor();if (p == head) {int r = tryAcquireShared(arg);if (r >= 0) {// 共享式锁的传播性质实现                        setHeadAndPropagate(node, r);
                        p.next=null;// help GC
                        failed =false;return;
                    }
                }if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())thrownew InterruptedException();
            }
        }finally {if (failed)
                cancelAcquire(node);
        }
    }// java.util.concurrent.locks.AbstractQueuedSynchronizer#setHeadAndPropagate/**
     * Sets head of queue, and checks if successor may be waiting
     * in shared mode, if so propagating if either propagate > 0 or
     * PROPAGATE status was set.
     *
     *@param node the node
     *@param propagate the return value from a tryAcquireShared*/privatevoid setHeadAndPropagate(Node node,int propagate) {
        Node h= head;// Record old head for check below        setHead(node);/*
         * Try to signal next queued node if:
         *   Propagation was indicated by caller,
         *     or was recorded (as h.waitStatus either before
         *     or after setHead) by a previous operation
         *     (note: this uses sign-check of waitStatus because
         *      PROPAGATE status may transition to SIGNAL.)
         * and
         *   The next node is waiting in shared mode,
         *     or we don't know, because it appears null
         *
         * The conservatism in both of these checks may cause
         * unnecessary wake-ups, but only when there are multiple
         * racing acquires/releases, so most need signals now or soon
         * anyway.*/if (propagate > 0 || h ==null || h.waitStatus < 0 ||
            (h= head) ==null || h.waitStatus < 0) {
            Node s= node.next;// 递归进行唤醒下一线程节点,从而级联唤醒if (s ==null || s.isShared())
                doReleaseShared();
        }
    }/**
     * Release action for shared mode -- signals successor and ensures
     * propagation. (Note: For exclusive mode, release just amounts
     * to calling unparkSuccessor of head if it needs signal.)*/privatevoid doReleaseShared() {/*
         * Ensure that a release propagates, even if there are other
         * in-progress acquires/releases.  This proceeds in the usual
         * way of trying to unparkSuccessor of head if it needs
         * signal. But if it does not, status is set to PROPAGATE to
         * ensure that upon release, propagation continues.
         * Additionally, we must loop in case a new node is added
         * while we are doing this. Also, unlike other uses of
         * unparkSuccessor, we need to know if CAS to reset status
         * fails, if so rechecking.*/for (;;) {
            Node h= head;if (h !=null && h != tail) {int ws = h.waitStatus;if (ws == Node.SIGNAL) {if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))continue;// loop to recheck cases                    unparkSuccessor(h);
                }elseif (ws == 0 &&
                         !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))continue;// loop on failed CAS            }if (h == head)// loop if head changedbreak;
        }
    }

  总结: 多个线程的唤醒,主要是使用了级联唤醒的机制,在做共享锁时,根据现有的情况,进行唤醒下一线程。而当线程调度很快或算法不确定时,就会给人一种所有线程一起被唤醒工作的效果。

  • 作者:等你归去来
  • 原文链接:https://www.cnblogs.com/yougewe/p/16064684.html
    更新时间:2022年6月1日08:57:27 ,共 15729 字。