PyTorch之利用预训练模型进行Fine-tuning教程

2022-09-27 11:48:36

在Deep Learning领域,很多子领域的应用,比如一些动物识别,食物的识别等,公开的可用的数据库相对于ImageNet等数据库而言,其规模太小了,无法利用深度网络模型直接train from scratch,容易引起过拟合,这时就需要把一些在大规模数据库上已经训练完成的模型拿过来,在目标数据库上直接进行Fine-tuning(微调),这个已经经过训练的模型对于目标数据集而言,只是一种相对较好的参数初始化方法而已,尤其是大数据集与目标数据集结构比较相似的话,经过在目标数据集上微调能够得到不错的效果。

Fine-tune预训练网络的步骤

1. 首先更改预训练模型分类层全连接层的数目,因为一般目标数据集的类别数与大规模数据库的类别数不一致,更改为目标数据集上训练集的类别数目即可,一致的话则无需更改;

2. 把分类器前的网络的所有层的参数固定,即不让它们参与学习,不进行反向传播,只训练分类层的网络,这时学习率可以设置的大一点,如是原来初始学习率的10倍或几倍或0.01等,这时候网络训练的比较快,因为除了分类层,其它层不需要进行反向传播,可以多尝试不同的学习率设置。

3.接下来是设置相对较小的学习率,对整个网络进行训练,这时网络训练变慢啦。

下面对利用PyTorch深度学习框架Fine-tune预训练网络的过程中涉及到的固定可学习参数,对不同的层设置不同的学习率等进行详细讲解。

1. PyTorch对某些层固定网络的可学习参数的方法:

class Net(nn.Module):

    def __init__(self, num_classes=546):
        super(Net, self).__init__()
        self.features = nn.Sequential(

            nn.Conv2d(1, 64, kernel_size=3, stride=2, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),

            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),

        )

        self.Conv1_1 = nn.Sequential(

            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),

            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
        )

 	for p in self.parameters():
            p.requires_grad=False

        self.Conv1_2 = nn.Sequential(

            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),

            nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),

        )

如上述代码,则模型Net网络中self.features与self.Conv1_1层中的参数便是固定,不可学习的。这主要看代码:

for p in self.parameters():
    p.requires_grad=False

插入的位置,这段代码前的所有层的参数是不可学习的,也就没有反向传播过程。也可以指定某一层的参数不可学习,如下:

for p in  self.features.parameters():
    p.requires_grad=False

则 self.features层所有参数均是不可学习的。

注意,上述代码设置若要真正生效,在训练网络时需要在设置优化器如下:

 optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

2. PyTorch之为不同的层设置不同的学习率

model = Net()
conv1_2_params = list(map(id, model.Conv1_2.parameters()))
base_params = filter(lambda p: id(p) not in conv1_2_params,
                     model.parameters())
optimizer = torch.optim.SGD([
            {'params': base_params},
            {'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}], args.lr,             
            momentum=args.momentum, weight_decay=args.weight_decay)

上述代码表示将模型Net网络的 self.Conv1_2层的学习率设置为传入学习率的10倍,base_params的学习没有明确设置,则默认为传入的学习率args.lr。注意:

[{'params': base_params}, {'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}]

表示为列表中的字典结构。

这种方法设置不同的学习率显得不够灵活,可以为不同的层设置灵活的学习率,可以采用如下方法在adjust_learning_rate函数中设置:

def adjust_learning_rate(optimizer, epoch, args):
    lre = []
    lre.extend([0.01] * 10)
    lre.extend([0.005] * 10)
    lre.extend([0.0025] * 10)
    lr = lre[epoch]
    optimizer.param_groups[0]['lr'] = 0.9 * lr
    optimizer.param_groups[1]['lr'] = 10 * lr
    print(param_group[0]['lr'])
    print(param_group[1]['lr'])

上述代码中的optimizer.param_groups[0]就代表[{'params': base_params}, {'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr}]中的'params': base_params},optimizer.param_groups[1]代表{'params': model.Conv1_2.parameters(), 'lr': 10 * args.lr},这里设置的学习率会把args.lr给覆盖掉,个人认为上述代码在设置学习率方面更灵活一些。上述代码也可如下变成实现(注意学习率随便设置的,未与上述代码保持一致):

def adjust_learning_rate(optimizer, epoch, args):
    lre = np.logspace(-2, -4, 40)
    lr = lre[epoch]
    for i in range(len(optimizer.param_groups)):
        param_group = optimizer.param_groups[i]
        if i == 0:
            param_group['lr'] = 0.9 * lr
        else:
            param_group['lr'] = 10 * lr
        print(param_group['lr'])

下面贴出SGD优化器的PyTorch实现,及其每个参数的设置和表示意义,具体如下:

import torch
from .optimizer import Optimizer, required


class SGD(Optimizer):
    r"""Implements stochastic gradient descent (optionally with momentum).

    Nesterov momentum is based on the formula from
    `On the importance of initialization and momentum in deep learning`__.

    Args:
        params (iterable): iterable of parameters to optimize or dicts defining
            parameter groups
        lr (float): learning rate
        momentum (float, optional): momentum factor (default: 0)
        weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
        dampening (float, optional): dampening for momentum (default: 0)
        nesterov (bool, optional): enables Nesterov momentum (default: False)

    Example:
        >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
        >>> optimizer.zero_grad()
        >>> loss_fn(model(input), target).backward()
        >>> optimizer.step()

    __ http://www.cs.toronto.edu/%7Ehinton/absps/momentum.pdf

    .. note::
        The implementation of SGD with Momentum/Nesterov subtly differs from
        Sutskever et. al. and implementations in some other frameworks.

        Considering the specific case of Momentum, the update can be written as

        .. math::
                  v = \rho * v + g \\
                  p = p - lr * v

        where p, g, v and :math:`\rho` denote the parameters, gradient,
        velocity, and momentum respectively.

        This is in contrast to Sutskever et. al. and
        other frameworks which employ an update of the form

        .. math::
             v = \rho * v + lr * g \\
             p = p - v

        The Nesterov version is analogously modified.
    """

    def __init__(self, params, lr=required, momentum=0, dampening=0,
                 weight_decay=0, nesterov=False):
        if lr is not required and lr < 0.0:
            raise ValueError("Invalid learning rate: {}".format(lr))
        if momentum < 0.0:
            raise ValueError("Invalid momentum value: {}".format(momentum))
        if weight_decay < 0.0:
            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))

        defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
                        weight_decay=weight_decay, nesterov=nesterov)
        if nesterov and (momentum <= 0 or dampening != 0):
            raise ValueError("Nesterov momentum requires a momentum and zero dampening")
        super(SGD, self).__init__(params, defaults)

    def __setstate__(self, state):
        super(SGD, self).__setstate__(state)
        for group in self.param_groups:
            group.setdefault('nesterov', False)

    def step(self, closure=None):
        """Performs a single optimization step.

        Arguments:
            closure (callable, optional): A closure that reevaluates the model
                and returns the loss.
        """
        loss = None
        if closure is not None:
            loss = closure()

        for group in self.param_groups:
            weight_decay = group['weight_decay']
            momentum = group['momentum']
            dampening = group['dampening']
            nesterov = group['nesterov']

            for p in group['params']:
                if p.grad is None:
                    continue
                d_p = p.grad.data
                if weight_decay != 0:
                    d_p.add_(weight_decay, p.data)
                if momentum != 0:
                    param_state = self.state[p]
                    if 'momentum_buffer' not in param_state:
                        buf = param_state['momentum_buffer'] = torch.zeros_like(p.data)
                        buf.mul_(momentum).add_(d_p)
                    else:
                        buf = param_state['momentum_buffer']
                        buf.mul_(momentum).add_(1 - dampening, d_p)
                    if nesterov:
                        d_p = d_p.add(momentum, buf)
                    else:
                        d_p = buf

                p.data.add_(-group['lr'], d_p)

        return loss

经验总结:在Fine-tuning时最好不要隔层设置层的参数的可学习与否,这样做一般效果饼不理想,一般准则即可,即先Fine-tuning分类层,学习率设置的大一些,然后在将整个网络设置一个较小的学习率,所有层一起训练。至于不先经过Fine-tune分类层,而是将整个网络所有层一起训练,只是分类层的学习率相对设置大一些,这样做也可以,至于哪个效果更好,没评估过。当用三元组损失(triplet loss)微调用softmax loss训练的网络时,可以设置阶梯型的较小学习率,整个网络所有层一起训练,效果比较好,而不用先Fine-tune分类层前一层的输出。

  • 作者:鹊踏枝-码农
  • 原文链接:https://blog.csdn.net/u011501388/article/details/105470891
    更新时间:2022-09-27 11:48:36